top of page

В престижном журнале Nano Letters опубликован, наверное, самый подробный обзор свойств двумерного алмаза, или диамана. Обзор содержит 106 ссылок на публикации посвящённых данной тематике. В статье обсуждаются свойства диамана, проблемы его синтеза и обсуждаются перспективы этого материала.


Работа опубликована в журнале Nano Lett. 2021

Пожалуй, не будет преувеличением сказать, что алмаз является самым известным кристаллом. Название алмаз всегда ассоциировалось со словом «самый» - самый твёрдый, самый механически жёсткий, самый износостойкий, самый теплопроводный. Естественным образом внимание учёных обращается на его наноразмерный аналог, где также часто обнаруживаются удивительные свойства (например, ультравысокая твёрдость в нанополикристаллах). С развитием направления двумерных материалов возник естественное желание получить и двумерный алмаз, чьи потенциальные свойства поставили бы его в ряд самых перспективных наноструктур наряду с графеном, h-BN или MoS2. Однако, в отличии от данных наноматериалов получение 2D алмаза является сложным процессом, поскольку его формированию мешает эффект графитизации приводящий к его нестабильности на нанометровом размере. Таким образом данный обзор включает в себя две основные части посвящённые особым свойства двумерного алмаза – диамана, и способу его получения, химически индуцированному фазовому переходу, интенсивно изучаемому в последнее время.




На рисунке - эволюция углерода, от двухслойного графена (левая часть рисунка), присоединение к которого сторонних атомов приводит к образованию двумерного алмаза (середина), который, в свою очередь может быть использован в качестве основы для роста кристалла (справа, чёрный цвет).

Обновлено: 5 янв. 2022 г.

Проект нашего коллектива "Химически индуцированный фазовый переход в низкоразмерных структурах" был поддержан Российским научным фондом по результатам конкурса 2021 года «Проведение фундаментальных научных исследований и поисковых научных исследований отдельными научными группами»


Контролируемое изменение структуры наноматериалов на атомном уровне является важнейшей задачей современного материаловедения. Влияние поверхности выражается в необходимости учёта размера наноструктур при описании их стабильности. Особенно отчётливо данная проблема проявляется при исследовании фазовой трансформации наноматериалов, когда их энергия начинает зависеть не только от внешних условий, но и от вклада поверхностных эффектов. Например, классическая фазовая диаграмма Банди углерода меняется при уменьшении толщины углеродной плёнки, давление фазового перехода графит-алмаз увеличивается, что отражает увеличение нестабильности алмаза при уменьшении его размера. При достижении атомарной толщины алмазные плёнки должны демонстрировать ряд крайне привлекательных физических свойств, однако их синтез требует принципиально иных подходов. Естественным для сегодняшней науки кажутся два пути синтеза наноматериала: способы «сверху-вниз» и «снизу-вверх». Способ «сверху-вниз», когда макроскопический материал разделяется до необходимой наноструктуры, не рассматривался, поскольку, вероятно, является невозможным получение алмазных плёнок нанометровой толщины путём разделения кристалла алмаза. Способ «снизу-вверх» (необходимая наноструктура синтезируется из наноструктур меньших размеров), кажется, для данного случая наиболее привлекательным, хотя и, безусловно, требует преодоления ряда нетривиальных научных проблем. Традиционный метод химического осаждения из газовой фазы неприменим для решения задачи получения алмазов атомарной толщины из-за высокой скорости роста алмазных слоёв и их неоднородности на атомном уровне. Поэтому в данной работе будет рассмотрен другой вариант получения алмазных плёнок, когда исходным материалом является не пар, а двухслойная графеновая плёнка. Образование алмазных пленок происходит путём контролируемой химической реакции двух графеновых листов со сторонними атомами – главным образом водородом или фтором. Такой способ будет опробован нами экспериментально, а теоретически мы детально изучим механизм трансформации графеновых слоёв не только в случае бислойного графена, но также и других структур на основе слабо связанных слоёв – двухслойных углеродных нанотрубок и родственных наноматериалов.

Данный проект будет выполнять усилиями нашего коллектива, а также нашими коллегами из Института проблем технологии микроэлектроники РАН и МГУ. Возглавляет проект д.ф.-м.н. Сорокин Павел Борисович.

logo_graph-bold-blackandwhite.png

Лаборатория цифрового материаловедения

  • Facebook
  • Instagram
  • Black Vkontakte Иконка

Контакты:

ldms@misis.ru

8(495)9550063

119049, ауд. 407, Ленинский пр. д.4,стр1, Москва, Россия

- научные исследования

- наноматериалы

- моделирование

- материаловедение   Laboratory of Digital Material Science

bottom of page